BOGLÁRKA TÓTH

YEAR OF BIRTH

1999

FORMER SZENT-GYÖRGYI PUPIL

no

SZENT-GYÖRGYI MENTOR

László Acsády

JUNIOR MENTOR

SPECIALIZATION

neurobiology

SECONDARY SCHOOL

Ágoston Trefort Practising High School of Eotvos Lorand University

NAME OF TEACHER

Judit Szászné Heszlényi

LANGUAGES

English/C1

National Academy of Scientist Education, 6th year

Semmelweis University Faculty of Medicine, 6th year

IMPORTANCE, AIMS AND POSSIBLE OUTCOME OF RESEARCH

There is growing evidence in the literature for the interdependent activity of the cortex and thalamus, based on this knowledge we can conclude that the thalamus is not just a simple relay site for the cortex, but they are interdependent and to maintain cortical activity thalamic input is required. Our next paper will examine frontal cortico-thalamic pathways using anatomical, electrophysiological and optogenetic behaviour experiments. Based on our research frontal cortico-thalamic pathways show major differences in anatomy, connectivity and function. In my independently performed optogenetic behavioural experiments, I examine frontal layer 5 cortico-thalamic pathways during motor learning. Based on my work (and supported by our anatomical findings), plasticity in this connection is possible, which would reshape our understanding of thalamo-cortical interactions.

AMBITIONS AND CAREER GOALS

After receiving my medical degree next year I'm planning to apply for the pre-PhD scholarship at the KOKI, where I could get an insight into 3 different laboratories' work. Either during or after my PhD I'm planning to spend a few years abroad. I'm planning to work in research, in the field of neuroscience.

HONORS AND PRIZES

- 2019 Semmelweis University TDK Conference; I. prize
- 2019 National TDK Conference; special prize
- 2020 Semmelweis University TDK Conference; I. prize

PUBLICATIONS

Hádinger, N., Bősz, E., **Tóth, B.** et al. (2023) Region-selective control of the thalamic reticular nucleus via cortical layer 5 pyramidal cells. **Nat Neurosci 26,** 116–130.